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EXECUTIVE SUMMARY

This report summarizes the effort during fiscal year 2015 (FY15) to develop mesoscale capabilities
for microstructure evolution in reactor pressure vessels. During operation, reactor pressure vessels are
subject to hardening and embrittlement caused by irradiation induced defect accumulation and irradiation
enhanced solute precipitation. Both defect production and solute precipitation start from the atomic scale,
and manifest their eventual effects as degradation in engineering scale properties. To predict the property
degradation, multiscale modeling and simulation are needed to deal with the microstructure evolution,
and to link the microstructure features to material properties. In this report, the development of mesoscale
capabilities for defect accumulation and solute precipitation is summarized. Atomic scale efforts that
supply information for the mesoscale capabilities are also included.
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1 Introduction

The reactor pressure vessel (RPV) in a nuclear reactor contains the reactor core and internals under elevated
pressures and temperatures. It serves as the most important pressure boundary component of the nuclear
steam supply system, and provides structural support for the reactor core and internals. RPVs are usually
made of Fe-based steels, with Ni, Mn and Si being the primary alloying elements, and Cu as either an al-
loying element or an impurity [4]. During their service life, RPVs are subject to concurrent thermal aging
and neutron irradiation, which degrade the mechanical properties of the material from which they are built.
In light water reactors (LWRs), RPVs usually operate at a temperature close to 300◦C, and they are exposed
to neutron fluxes (E>1.0 MeV) in the range of 1012 to 1015 n/(m2s), corresponding to atomic displacement
rates in the range of 10−9 to 10−11 dpa/s [5]. Here dpa stands for displacement per atom. The flux is usu-
ally higher in pressurized water reactors (PWRs) than in boiling water reactors (BWRs). Irradiation by high
energy neutrons produces lattice defects in materials, including vacancies (unoccupied lattice sites) and inter-
stitials (extra atoms on lattice sites) and their clusters. At the RPV operating temperatures, these defects can
diffuse and agglomerate into extended defects such as voids, loops and other complexities, which together
are referred to as lattice features in the context. The lattice features impede dislocation motion, causing hard-
ening and embrittlement [6]. More importantly, the irradiation induced defects enhance solute diffusion and
tremendously accelerate the precipitation process, leading to high densities of CRPs (Cu-rich precipitates)
and MNPs (Mn/Ni-rich clusters), i.e., the so-called late-blooming-phases (LBPs). Both CRPs and MNPs
form in medium or high Cu-concentration (>0.1%Cu) alloys, and only MNPs may form in low (or no) Cu-
concentration (<0.1% Cu) alloys [7]. Similar to lattice features, solute precipitates also behave as obstacles
for dislocations motion, resulting in hardening and embrittlement [6].

RPVs are extremely expensive, if not impossible, to be replaced or repaired. The integrity of RPVs is one
of the important considerations that could limit the service life of current LWRs. To have a reliable assess-
ment of RPV integrity under long term operation, it is required to predict the hardening and embrittlement as
functions of irradiation and thermal histories. Due to the slow kinetics involved, the accumulation of lattice
features and precipitates, particularly the LBPs, take several or tens of years to develop, making experimental
studies difficult. The development of lattice features and solute precipitates depends on both neutron fluence
and flux, in addition to temperature. In experimental studies using test reactors, orders higher fluxes than
those in LWRs have to be used to reach the same fluence in a short time. The very different fluxes used in
the test reactors from those in LWRs may lead to very different microstructure evolution, and thus inaccurate
predictions of hardening and embrittlement. On the other hand, surveillance data obtained from commercial
reactors utilize the same fluxes as those in LWRs. These data are highly valuable for fitting and validation
of empirical or semi-empirical engineering-scale models predicting RPV embrittlement [8, 9]. However,
to extrapolate these models into higher fluence levels that will be reached in extended reactor service life
is questionable due to the missing physics. As an alternative approach, physics-based multiscale modeling
with experimental validations becomes appealing to address this issue.

The build-up of lattice features and solute precipitates starts from the atomic scale, with their sizes in
the order of a few nanometers (10−9m) in RPVs. The corresponding timescale spans from fractions of pi-
cosecond (10−12s) to years (108s) [8]. Therefore, to capture the physics involved in microstructure evolution
in RPVs requires multiscale modeling and simulations from the atomic to the engineering scale. Under the
Grizzly project, we utilize multiscale modeling and simulation to describe the microstructure evolution and
the consequent degradation in mechanical properties. In general, the mechanical behavior of a sample of
material is determined by its microstructure. For RPV steels, the most important microstructural features
are lattice features and solute precipitates, including their volumetric density, size distribution, and spatial
distribution. These microstructural features evolve with time, dependent on the irradiation and thermal his-
tories. To predict the hardening and embrittlement in RPVs, models are needed to describe the evolution
of microstructural features and to describe the corresponding mechanical behavior. In this report, we focus
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on the development of models for microstructure evolution. For lattice features, we use rate theory (RT)
and cluster dynamics (CD). We couple lattice kinetic Monte Carlo (LKMC) and phase field (PF) for solute
precipitation. For both lattice features and solute precipitates, atomistic simulations such as molecular dy-
namics (MD) simulations and density functional theory (DFT) calculations are needed to obtain the required
material parameters. We note that in reality, the evolutions of lattice features and solute precipitates are cou-
pled with each other, with the detailed interactions not fully clear at this time [10, 11]. Here, they are treated
separately. The effect of irradiation-induced defects on solute precipitation is taken into consideration by
using vacancy concentration dependent diffusivities for solute elements.

The development of these models spans multiple years. In this document, the effort made in FY15 is
summarized. For background on previous work, please refer to previous Grizzly reports [12]. In FY15, we
have focused on model development for lattice features and solute precipitates. In this development, we use
realistic material parameters for RPV steels when data are available. Otherwise, surrogate materials such as
pure Fe are used for simplification and for the purpose of benchmark with literature results. Unless otherwise
stated, the model development is made in the Grizzly simulation package within the MOOSE framework. In
the following, the PF model for FeCuMnNi alloys is described in Chapter 2, and the coupling of LKMC with
phase field in Chapter 3. The RT and CD models for lattice features are presented in Chapter 4, followed by
Summary in Chapter 5.
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2 Phase field model development for solute precipitation in
FeCuMnNi alloys

The phase field method has emerged as a powerful and flexible tool for quantitative modeling of the coevolu-
tion of microstructure and physical properties at the mesoscale. In the phase field method, the microstructure
is described by a system of continuous variables, where the microstructure interfaces have a finite width over
which the variables exhibit smooth transitions. The evolution of the microstructure is defined in terms of the
free energy of the system, and can be coupled to other physics to provide a complete view of the material
behavior. Phase field simulations range from hundreds of nanometers to hundreds of microns and evolve at
diffusive time scales [13].

An iron-copper-manganese-nickel (FeCuMnNi) quaternary two phase free energy and mobility model
was implemented in Grizzly. The FeCuMnNi alloy will serve as the surrogate material for reactor pressure
vessel (RPV) wall materials to perform microstructure evolution simulations. To enable the simulation of
solute precipitation including the precipitate nucleation process, a novel nucleation algorithm was developed
to add physical nucleation to the phase field method. A set of underlying capabilities was added to the
MOOSE phase field module to enable these developments.

2.1 Capability development
The phase_field module in MOOSE contains the necessary tools to solve the partial differential equa-
tions for the phase field method that define the microstructure variable evolution to minimize the overall
free energy. The evolution of non-conserved order parameters 𝜂𝑖 (representing phase regions and grains) is
governed by the Allen-Cahn equation (1) and conserved order parameters 𝑐𝑖 (representing concentrations)
are evolved using the Cahn-Hilliard equation (2).

𝜕𝜂𝑗

𝜕𝑡
= −𝐿𝑗

𝛿𝐹

𝛿𝜂𝑗
(1)

𝜕𝑐𝑖
𝜕𝑡

= ∇ ⋅𝑀𝑖∇
𝛿𝐹

𝛿𝑐𝑖
(2)

𝐹 is the total free energy of the modeled system as a function of the phase field variables, which can be
formulated as a volume integral

𝐹 = ∫Ω

[
𝑓loc(𝑐, 𝜂) + 𝑓gr(∇𝑐,∇𝜂) + 𝐸d

]
𝑑𝑉 , (3)

over multiple free energy density contributions, where Ω is the simulation domain, 𝑓loc is the local free
energy density, 𝑓gr is the gradient energy contribution, and 𝐸d is the contribution of other sources of energy.
The 𝑐, 𝜂 and ∇𝑐,∇𝜂 indicate a functional dependence on all conserved and non-conserved order parameters
in the domain and their gradients, respectively. Executing the variational derivatives in (1) and (2) yields
terms containing the derivatives of the local free energy density 𝑓loc with respect to all order parameters.

The thermodynamic properties of the modeled system are determined by the thermodynamic potential
in 𝑓loc. The gradient contribution 𝑓gr is the reason the phase field model represents interfaces with a diffuse
width and contributes to the interfacial energy. 𝑓loc is therefore the primary input needed to formulate a new
phase field material model. In the phase_field module, the residuals for the generic phase field equations
are provided as kernels, while the free energy and its derivatives are supplied by material objects. We use
a special material interface to provide material properties for all necessary derivatives of the free energy.
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In general, users use the provided kernels without modification, and only create material objects defining
different free energies.

The standard MOOSE solver uses the preconditioned Jacobian-free Newton Krylov method (PJFNK),
provided by the PETSc library [14]. To improve the convergence of the solve, the chosen preconditioning
matrix should be as close as possible to the actual Jacobian of the problem. Computing the Jacobian matrix
entries effectively means providing the derivatives of the residual vector with respect to all non-linear vari-
ables of the problem, thus requiring additional derivatives (including cross-derivatives) of the free energy
functional. Especially for quaternary two phase free energy this amounts to a large number of derivatives to
be evaluated.

2.1.1 Automatic differentiation
To create a material object that defines the free energy for a phase field model, code must be written that
defines not only the thermodynamic free energy expression, but also its derivatives. For non-conserved order
parameters, the 2nd derivatives are needed and for conserved order parameters, up to the 3rd derivatives could
be required. This is complicated even more when a free energy is a function of multiple variables, because
all cross derivatives are also required. To avoid having to take and implement all the derivatives, we have
implemented automatic symbolic differentiation.

MOOSE uses the Function Parser library that is included as a third-party plugin in the underlying libMesh
finite element library [15]. The Function Parser Library accepts a mathematical function definition given as a
plain text string. This string is lexically parsed into an intermediate tree representation and then transformed
into a stack machine bytecode. This bytecode can then be executed by the function parser bytecode interpreter
module as often as necessary without further transformations.

This intermediate tree representation of the function parser expressions lends itself to algorithmic trans-
formations, such as an automatic differentiation procedure. In this tree structure, leaf nodes can correspond
to constants or variables, and internal nodes correspond to mathematical operators and functions with the
arguments contained in the respective child nodes or subtrees. The derivative of the leaf nodes yields 0 for
all nodes that do not represent the variable the derivative is taken with respect to, and 1 for all nodes that do
represent the variable. The derivatives of the internal nodes are constructed recursively according to a set of
elementary derivative rules.

Construction of the derivative starts at the root node of the expression tree. For the example expression
tree in Figure 1, which represents the expression 𝑥2(𝑦 + 5), the root node holds the multiplication 𝑁1 =
𝑁2 ⋅𝑁3. To obtain the derivative with respect to x of the given expression we need to calculate the derivative
of the root node 𝑑𝑥𝑁1. We set 𝑑𝑥𝑁1 = 𝑑𝑥𝑁2 ⋅𝑁3+𝑁2 ⋅𝑑𝑥𝑁3 according to the product rule. This expression
contains derivatives of the nodes 𝑁2 and 𝑁3, which are recursively constructed, until the leaf nodes are
reached which have a trivial vanishing 0 derivative in all cases except the 𝑑𝑥𝑁4, which evaluates to 1. The
full derivative expression that is constructed this way is (2𝑥 ⋅ 1) ⋅ (𝑦 + 5) + 𝑥2(0 + 0).

The function parser library provides a comprehensive algebraic optimizer that groups, reorders, and
transforms the function expression into an equivalent but faster to evaluate form. This optimization stage
delivers a speedup of a factor of two, on average. The algebraic simplifications are essential to remove the
trivial leaf node derivatives which may lead to evaluation errors such as divisions by zero, that can be avoided
by simple term cancellations. In the above example, the simplifications reduce the derivative expression to
2𝑥(𝑦 + 5).

2.1.2 Just-in-time compilation
To further improve the performance of the parsed and runtime interpreted functions, we have developed
a just-in-time (JIT) compilation module. At runtime, the generated bytecode sequences are automatically
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Figure 1: Schematic example of the tree representing the mathematical expression 𝑥2(𝑦 + 5). The nodes
N1 and N3 represent the multiplication operator and the sum operator with two arguments each, the internal
node N2 represents a square function with one argument, and the leaf nodes N4-N6 represent the variables
𝑥, 𝑦, and the constant 5.

transformed into small C source code files. A compiler is dispatched to compile each function file into a
dynamically linkable library, which then is loaded on the fly using the dlopen POSIX system call. If at any
stage the JIT compilation fails the function evaluation falls back on the bytecode interpreter, otherwise the
generated machine code is called. The time overhead of the additional compilation step is on average of the
order of 0.1s per function expression or below, depending on the system the simulation is executed on. This
is further mitigated by a caching system. A unique hash is computed from the function bytecode and the
compiled functions are stored permanently using the hash as a filename. Recompilation will only occur if
the bytecode, and thus the function expression, changes. Trivial function changes, namely the modification
of constants, will in most cases not trigger a recompilation.

In Figure 2 the performance of unoptimized interpreted function parser evaluations is compared to com-
binations of optimized and JIT compiled function evaluations for a variety of compilers under Linux and
MacOS. Two function sets were used for the comparison. The left data labeled no AD were obtained using
a set of mathematical expressions as they appear in free energy models. The right bar sets labeled AD were
obtained by applying the automatic differentiation to the former functions. Two conclusions can be drawn
from this comparison, firstly the JIT compilation alone delivers speedups up to a factor of 10. The algebraic
optimizer can deliver speedups up to a factor of two on certain functions. The efficacy of the optimizer is
largest on the AD function set, which contains lots of trivial terms from the leaf node derivatives, such as
entire sub terms that end up being multiplied by 0.

Through this automatic differentiation system we achieve a significant reduction in developer time and
remove a source of developer errors that are difficult to track down and debug. The resulting models offer
optimal convergence properties due to the complete implementation of the full Jacobian matrix.

2.1.3 Expression Builder
To generate functional expressions for free energies and mobilities that can be passed to the automatic dif-
ferentiation algorithm we have developed the ExpressionBuilder system. ExpressionBuilder is a C++ class
that gets added to MOOSE objects such as Materials through inheritance and makes a set of new nested
classes available to hold terms and functions. A term is defined as a symbol, a number or a mathematical
operator and its parameters. A function is defined as a term with a substitution rule that substitutes the func-
tion arguments into the underlying term. In addition ExpressionBuilder provides overloaded operators that
accept the new term and function types as parameters and returns augmented terms. Terms are internally
stored as tree structures. Node in these tree can represent an operator or mathematical function (such as the
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Figure 2: Performance comparison for the parsed functions showing the speed-up gained by the just-in-time
compilation (JIT) and the algebraic optimization (FPOptimizer). Various compilers were compared on the
INL HPC system and on a desktop computer. The combination of JIT and algebraic optimization can yield
speed-ups of up to about a factor of twenty.

logarithm or trigonometric functions) or a symbol or number. Operator and function node have child nodes
representing the arguments (e.g. left hand side and right hand side). The overloaded operators assemble a
tree representing an entire expression step by step. Named terms and functions can be combined to form new
terms and functions, allowing the construction of complex expressions. The syntax of expression builder is
designed to naturally match mathematical expressions as they can be found in scientific publications.

2.1.4 Multiphase models
Multiphase model development requires the construction of a global free energy functional spanning the
entire phase space of the system. One common approach is utilizing a linear combination of the free energy
densities 𝑓𝑙𝑜𝑐,𝑗 of each phase in the system.

𝑓𝑙𝑜𝑐(𝑐, 𝜂) =

[∑
𝑗

ℎ(𝜂𝑗)𝑓𝑙𝑜𝑐,𝑗(𝑐)

]
+𝑊 𝑔(𝜂) (4)

A switching function ℎ(𝜂) smoothly changes from 0 to 1 as 𝜂 goes from 0 to 1. The total weight of all phase
free energy contributions at each point in the simulation volume is exactly unity, which translates to the need
to enforce the constraint 𝑘(𝜂) = 0 for

𝑘(𝜂) =

[∑
𝑗

ℎ(𝜂𝑗)

]
− 1. (5)

Constraint enforcement Two phase systems can easily be modeled using a single order parameter 𝜂1 and
the explicit constraint 𝜂2 = 1 − 𝜂1, which, for a symmetric switching function with ℎ(𝜂) = 1 − ℎ(1 − 𝜂),
satisfies the constraint 𝑘. For 𝑛-phase systems with 𝑛 > 2 it becomes advantageous to use 𝑛 order parameters.
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In this case the constraint 𝑘 is not automatically satisfied and needs to be enforced by other means. In the
MOOSE phase field module we offer two methods to enforce the switching function sum constraint, a hard
constraint utilizing the Lagrange multiplier technique and a soft constraint through a penalty term added to
the free energy.

The hard constraint is applied by introducing a Lagrange multiplier 𝜆 as a field variable. With 𝑎𝑗(𝜂, 𝑐, 𝑣)
being the weak form (Allen-Cahn) residual for the 𝑗th non-conserved order parameter, we need to find (𝜂, 𝜆)
satisfying the boundary conditions such that

𝑎𝑗(𝜂, 𝑐, 𝑣) + ∫Ω
𝜆
𝜕𝑘

𝜕𝜂𝑗
𝑣 𝑑𝑥 = 0 (6)

∫Ω
𝑞
𝜕(𝜆𝑘)
𝜕𝜆

𝑑𝑥 = 0 (7)

holds for every test function 𝑣 and 𝑞. We note that these equations alter the character of the Jacobian matrix
of the non-linear problem substantially by introducing a zero block on the Jacobian diagonal. This can
complicate the solve substantially. By replacing the constraint 𝑘 with a modified constraint

�̄�(𝜂, 𝜆) = 𝑘(𝜂) − 𝜖

2
𝜆, (8)

the Jacobian fill term 𝜖

2𝜆 introduces a small 𝜆 dependence in the constraint through an 𝜖 (which defaults to

10−9). This results in an on-diagonal Jacobian value of −𝜖 in the kernel of Eq. (7), while it drops out in the
residual of Eq. (6). This is necessary to force a Jacobian matrix with full rank, avoiding Zero pivot PETSc-
Errors, and greatly improves convergence. This approach results in a violation of the constraint by about 𝜖,
though this violation can be kept small by using an 𝜖 as small as possible.

As an alternative we implemented a soft constraint by constructing a penalty contribution 𝑓𝑝 to the free
energy as

𝑓𝑝 = 𝜒

[
1 −

∑
𝑗

ℎ(𝜂𝑗)

]2

, (9)

where 𝜒 is a configurable penalty factor.

2.1.5 Nucleation model
To deal with precipitate nucleation occurring during the aging process of the RPV materials, the phase
field method needs to be augmented. Phase field is intrinsically fluctuation free and strictly minimizes the
free energy in absence of external driving forces. Nucleation processes depend on thermal fluctuation for
nuclei to overcome the Gibbs barrier which results from energy penalty of a newly forming interface between
nucleus and matrix. Two classes of approaches for implementing nucleation phenomena in phase field can
be found in the literature. One approach is adding thermal fluctuations to the order parameter fields (which is
implemented in the MOOSE phase field module through the conserved noise classes). The main drawback of
this approach is the timestep reduction incurred by adding the short timescale fluctuations to potentially long
timescale diffusion processes. This drawback is avoided by the second type of nucleation model in which
nuclei above the critical size are directly inserted into the simulation cell, bypassing the nucleus formation
step. When a stable nucleus is inserted into the simulation cell all conserved order parameters must retain
their total value. In practice that means a depletion zone must be constructed around the nuclei. It is not
straightforward to determine how that zone should look in heterogeneous microstructures.

We have developed a free energy based discrete nucleation model for the phase field method to address
the issue of conserving concentrations and establishing physical depletion zones. At a nucleation site the
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local free energy density of the system is modified with an additional term that is computed from a list of
order parameter (concentration or phase) values and their desired target values for the phase that is supposed
to nucleate. As a simple first approach the sum of squares of the differences of an order parameter value 𝑐𝑖
and its target values 𝑐𝑖 is multiplied with a prefactor 𝛾 and added to the free energy density. This free energy
modification coerces the system to form stable precipitates.

𝑓nuc = 𝛾
∑
𝑖

(𝑐𝑖 − 𝑐𝑖)2 (10)

Nucleus positions are randomly chosen according to a nucleation probability density which can be calcu-
lated using classical nucleation theory. The nucleus list is updated at each timestep, adding new nucleation
sites (if nucleation events were determined to happen) and removing old nucleation sites once they expire.
Each nucleation site is kept in the list for a set hold time. The hold time is chosen sufficiently long for the
precipitate to form on the diffusive timescale of the system. As the precipitate forms at the target composition
the free energy density 𝑓nuc goes down to zero at the nucleation site.

The nucleation algorithm is implemented in MOOSE using two user objects and a material class. One
user object manages the global nucleus list, which is synchronized between MPI processes. The second user
object uses this list to create a map of all quadrature points in the system that are covered by a nucleation site.
A customizable radius can be assigned to the nucleation sites to stabilize precipitates of a given minimum
size. The material class accesses the map user object to decide whether the free energy should be modified
for a given quadrature point. This approach allows to update the map only if the nucleus list has changed or
the mesh was adapted, ensuring the best possible performance

2.2 Material models
We have implemented the two phase FeCuMnNi free energy by Koyama et al. [16] which provides con-
centration and temperature dependent free energy functions for the 𝛼 (bcc) and 𝛾 (fcc) phases. The general
structure of these free energies is

𝐺𝜙
𝑐 (𝑐𝑖, 𝑇 ) =

∑
𝑖

𝐺
𝜙
𝑖
(𝑇 )𝑐𝑖 +𝐸 𝐺𝜙(𝑐𝑖, 𝑇 ) +𝑚𝑔 𝐺𝜙(𝑇 ) + 𝑅𝑇

∑
𝑖

𝑐𝑖 ln𝐶𝑖, (11)

where 𝜙 = {𝛼, 𝛾} denotes the phase, 𝐸𝐺𝜙 is the excess heat of mixing, and 𝑚𝑔𝐺𝜙 is the magnetic contribution
to the free energy. 𝐺

𝜙
𝑖

is the free energy of the pure 𝜙 phase, which is taken from Dinsdale [17]. 𝐸𝐺𝜙 is
defined as

𝐸𝐺𝜙 =
∑
𝑖

∑
𝑗>𝑖

𝐿
𝜙
𝑖,𝑗
𝑐𝑖𝑐𝑗 +

∑
𝑖

∑
𝑗>𝑖

∑
𝑘>𝑗

𝐿
𝜙

𝑖,𝑗,𝑘
𝑐𝑖𝑐𝑗𝑐𝑘, (12)

with the coefficients 𝐿𝜙
𝑖,𝑗

and 𝐿
𝜙

𝑖,𝑗,𝑘
being functions of 𝑇 and 𝑐𝑖. The magnetic contribution 𝑚𝑔𝐺𝜙 is defined

as

𝑚𝑔𝐺𝜙 = 𝑅𝑇 ln
(
𝛽𝜙(𝑐𝑖) + 1

)
⋅ 𝑓

(
𝑇

𝑇
𝜙

𝐶
(𝑐𝑖)

)
, (13)

with 𝑓 defined by Hillert and Jarl [18]. For the parameterization please refer to the original publications.
We implemented the 𝛼 and 𝛾 free energy functions using the expression builder module (Section 2.1.3)

in the MOOSE phase field module. This allows us to make use of the symbolic automatic differentiation
(Section 2.1.1) while retaining high evaluation performance through the use of the just-in-time compilation
module (Section 2.1.2).

The 𝛼 and 𝛾 free energy functions are tied together to form a global free energy density model which
adds a non-conserved phase order parameter using the multiphase system (Section 2.1.4).
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A snapshot of the precipitate formation in a Fe83Cu15Mn1Ni1 alloy is shown in Figure 3. The formation
of copper core particle with a nickel/manganese shell can be observed. A phase transformation from the 𝛼

to the 𝛾 phase can be observed in the fully formed particles.

Figure 3: Late stage of precipitation in an Fe83Cu15Mn1Ni1 alloy. The concentration fields for copper, nickel,
manganese, and the phase order parameter distinguishing the 𝛼 and 𝛾 phases are shown in the four panels
(left to right).

We utilized the nucleation system (Section 2.1.5) to trigger the nucleation and growth of a copper pre-
cipitate in a Fe95Cu4Ni1 alloy sample at 600 degrees C. Figure 4 shows the evolution of the minimum and
maximum of the copper concentration. The maximum Cu concentration reaches 1.0 when a full saturated
copper precipitate forms. Figure 5 shows plots of the component concentrations and the free energy densi-
ties for the chemical contribution 𝐹𝑐 and the nucleation energy penalty 𝐹𝑛 in a FeCuNi system as a copper
precipitate with a nickel shell is forming.
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Figure 4: Evolution of the minimum and maximum of the copper concentration in a Fe95Cu4Ni1 sample
during the nucleation and growth of a copper precipitate.
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Figure 5: Snapshots at the beginning, middle, and conclusion of the nucleation process in an FeCuNi alloy.
The four panels in the three viewgraphs are (clockwise from the top left) copper and nickel concentrations,
bulk free energy density, and nucleation penalty energy density 𝐹𝑛 in eV/nm3. As the nucleus is forming, the
nucleation penalty vanishes and precipitate continues to grow to minimize the total free energy of the entire
system.
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3 Coupling of lattice kinetic Monte Carlo and phase field for solute
precipitation

3.1 Background
In this section, the coupling of LKMC with PF for solute precipitation is described. The LKMC was devel-
oped at INL adopting the SPPARKS framework [19], which was developed at Sandia National Laboratories.
For the LKMC method we adopted the residence-time-algorithm where the KMC time 𝑡𝐾𝑀𝐶 is given by
switching of vacancies with surrounding atoms [20]. A detailed description of the LKMC method can be
found in our previous reports [12] and the literature. Here only a brief introduction is given. In an LKMC
simulation, all atoms (or moving particles) are located on a prescribed, static lattice. Atoms move from one
lattice site to a neighboring site via a switching mechanism, usually mediated by vacancies. The interac-
tions between neighboring atoms are governed by pairwise bonds, for which the strength is parameterized
using DFT calculations on cohesive energy, energy of mixing, and defect formation and binding energies.
At a given temperature, the system evolves by moving of atoms to lower the total energy. Precipitation of
solutes takes place by clustering of solute atoms if it is energetically favored. At each LKMC step, only
one movement (per processor if in parallel) will be performed, and the KMC time will be advanced by an
amount inversely proportional to the total probability of moving summed over all atoms. The KMC time
(𝑡𝐾𝑀𝐶 ) will then be converted to physical time (𝑡𝑟𝑒𝑎𝑙) by rating the vacancy concentration in the simulation

over the thermal equilibrium vacancy concentration at the same temperature by: 𝑡𝑟𝑒𝑎𝑙 = 𝑡𝐾𝑀𝐶
𝐶𝐾𝑀𝐶
𝑣

𝐶𝑟𝑒𝑎𝑙
𝑣

. Here

𝐶𝐾𝑀𝐶
𝑣 is the vacancy concentration used in the simulations, and 𝐶𝑟𝑒𝑎𝑙

𝑣 is the realistic thermal vacancy con-
centration, such as that in a thermal aging experiments. At a temperature 𝑇 , the realistic thermal vacancy

concentration can be estimated by 𝐶𝑟𝑒𝑎𝑙
𝑣 = 𝑒𝑥𝑝(− 𝐸𝑓

𝐾𝑇
), with 𝐸𝑓 being the vacancy formation energy and 𝐾

the Boltzmann constant. (In this estimate the contribution of formation entropy, in the order of a few, is
ignored.) At each step, the number density, size distribution and spatial distribution of precipitates can be
obtained using post-processing.

The LKMC method parameterized using DFT calculations is a powerful tool for modeling coherent
precipitation in alloys, such as in the case of RPV steels. However, caution is needed in converting the
KMC time (t𝐾𝑀𝐶 ) to physical time (t𝑟𝑒𝑎𝑙) due to the effect of solute trapping. As solute atoms start to
precipitate from the matrix, vacancies become trapped by the precipitates. Once trapped, vacancies hop
around the precipitates without contributing to the precipitation kinetics in the matrix, i.e., nucleation of
new precipitates or growth of existing ones. Therefore, the physical time should not be advanced since the
trapped vacancies can not be taken as thermal vacancies any more. However, the KMC time will still be
advanced no matter whether the vacancies are trapped or not. The effect of solute trapping can be corrected
by monitoring the fraction of time that each vacancy spends in the matrix in LKMC simulations, 𝑓𝑣𝑡 [21, 12].

With the correction, the advancement in realistic time 𝑡𝑟𝑒𝑎𝑙 is now given by 𝑡𝑟𝑒𝑎𝑙 = 𝑡𝐾𝑀𝐶
𝑓𝑣𝑡∗𝐶𝐾𝑀𝐶

𝑣

𝐶𝑟𝑒𝑎𝑙
𝑣

. Here 𝑓𝑣𝑡

measures the fraction of time that vacancies spend in the Fe matrix (sites without Cu atoms being the first or
second nearest neighbors).

The method described above can indeed account for the effect of solute trapping regarding converting
KMC time to physical time. As shown in Figure 6 (a), soon as the simulation starts, CRPs form immediately,
causing substantial dropping in 𝑓𝑣𝑡. This means that for the majority of the simulation time, vacancies are
trapped by CRPs, without advancing the precipitation process. By including the effect of solute trapping,
the LKMC simulation agree well with thermal aging experiments on a Fe-Cu1.34% model alloy on the peak
cluster concentration and the time to reach that, as shown in Figure 6(b), indicating the capability of LKMC
for modeling the nucleation stage. However, the LKMC simulation fails on the coarsening stage. Due to
solute trapping, the precipitation process effectively stopped soon after the nucleation stage, at the end of

11



which the number of CRPs reaches a peak. As shown in Figure 6(a), due to the very small value of 𝑓𝑣𝑡, the
realistic time does not evolve any more, meaning that it’s nearly impossible to reach the coarsening stage in
the LKMC simulations.

Figure 6: (a) Fraction of time vacancies spent in the Fe matrix and number of CRPs (N𝑐10, CRPs with 10
or more Cu atoms) as functions of KMC time in a LKMC simulation, and (b) Cu cluster concentration as
a function of physical time from the LKMC simulation and previous experiments [1, 2, 3]. The simulation
was done at 573 K with a Fe-Cu1.34% model alloy. The simulation cell used was 100 by 100 by 100 in unit
of lattice constant of Fe, with two million atoms in total.

On the other hand, as a powerful method for microstructural and compositional evolution, the PF method
has long been criticized for its performance on nucleation, particularly in systems with dilute concentrations.
Even though advanced nucleation models can be used in some cases to facilitate nucleation, PF simulations
still reply on other algorithms or theories to obtain the nucleation rate and the critical nucleus size. Therefore,
it is highly desired to couple LKMC and PF for solute precipitation. In the coupling, the nucleation of
precipitates is described by LKMC. By obtaining the nucleation information from LKMC, including the
density, size, and spatial distribution of precipitates, PF will be used to model the subsequent coarsening
stage. Such a coupling has been realized in the Grizzly project by coupling SPPARKS and MOOSE. In the
following, details about the coupling will be described with a demonstration case using a Fe-Vacancy20%
model system.

3.2 Coupling of SPPARKS and MOOSE
The coupling of SPPARKS and MOOSE has been initiated a couple of years ago by another project to
couple PF and the Potts model for concurrent grain growth and phase transformation [22]. In that work, a
two way information passing has been established between SPPARKS and MOOSE. SPPARKS obtains the
concentration field from MOOSE, and uses it to calculate the energy of the system to evolve the spin number
and phase index of each lattice site. The spin number can be taken as grain identifiers and the phase index is
the order parameter for various phases. They are passed back to MOOSE to be used as parameters in the free
energy functional of a PF model for the evolution of the concentration field. SPPARKS and MOOSE interact
every MOOSE timestep, with the number of KMC steps determined by a prescribed ratio in the input file.

The aforementioned coupling between MOOSE and SPPARKS has led to interesting results and provided
a good example of information passing between these two very different frameworks. SPPARKS is a particle
based simulation package adopting discrete lattice sites, while MOOSE solves partial differential equations
over continuous domains. Here, the information passing is established by transferring the information on a
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lattice site in SPPARKS to a matched node on a MOOSE mesh. Therefore, the information passing is done
from a SPPARKS domain to a MOOSE domain of exactly the same size. The coupling has been shown
successful in 2D simulations where the square mesh in MOOSE matches the square lattice in SPPARKS.

To meet the needs of the Grizzly project, the two-way coupling has been extended to enable the using of
different meshes in MOOSE from the lattice structure in SPPARKS. This was done in the MOOSE frame-
work, and is available to Grizzly as it is based on MOOSE. Bcc Fe (or RPV steel) has a bcc crystal structure.
A 3D mesh that matches the bcc lattice currently does not exist in MOOSE. Alternatively, a cubic mesh is
used in MOOSE, which matches the corner sites in a bcc lattice unit cell. The coupling needs to be done
in 3D to fully represent the bcc crystal structure of Fe. In the previous version of coupling, MOOSE and
SPPARKS each solved for different variables: concentrations in MOOSE and spin number and phase index
in SPPARKS. After being transferred into MOOSE, the spin number and phase index are treated as auxiliary
variables. Here, the concentration fields are solved in both Grizzly and SPPARKS. The transferring can be
done on any variables in SPPARKS and Grizzly as long as they are defined in both systems. Moreover, since
no physical time is defined in the Potts model [22], the coupling was done on the spatial space only. This is
not a problem in coupling LKMC and Grizzly since in both a physical time can be defined. Also, the transfer
can be done on a sub-domain of a MOOSE mesh with the SPPARKS simulation domain.

Some changes in the code structure have also been made during the development of the coupling method.
Previously, the coupling was done using a UserObject in the ELK directory, which has been removed in
the currently version of MOOSE framework. Due to that change, the coupling is now dealt with by a
new MOOSE application called Magpie, which was created to handle coupling between any application
based on MOOSE and atomistic simulation packages such as SPPARKS and MyTrim [23]. A version of
SPPARKS containing the LKMC algorithm has been made publicly available on the GitHub website at
https://github.com/idaholab/SPPARKS with the permission of the original developers.

In a LKMC simulation, the microstructure information is represented by the atomic configuration on
a prescribed lattice, i.e., atoms of various elements on lattice sites. The atomic configuration needs to be
translated into concentration fields before transferring into MOOSE. As the lattice sites in LKMC are not
one-to-one matched to the nodes in the MOOSE mesh, caution is needed in defining concentration fields in
the LKMC model to ensure mass conservation. For the using the cubic mesh in MOOSE and bcc lattice in
SPPARKS, a way of defining the atomic concentrations has been derived so that mass conservation is fully
satisfied. The way of calculation concentrations fields may need be changed if another mesh structure is used
in MOOSE. In SPPARKS, an atomic concentration is defined at each lattice site involving its first and second
nearest neighbors. At the site 𝑖, the concentration of component 𝛼 is calculated by:

𝑐𝛼𝑖 = 1
4
𝑛𝛼𝑖 +

1
16

8∑
𝑗=1

𝑛𝛼𝑗 +
1
24

6∑
𝑘=1

𝑛𝛼
𝑘

(14)

Here 𝑗 and 𝑘 are indexes for the first and second nearest neighbors in a bcc lattice. 𝑛𝛼
𝑖

is 1 if the atom
at site 𝑖 is of element 𝛼, and 0 otherwise. By defining this way, the concentration at each lattice site has
contributions equally from its first and second nearest neighbors. Therefore, either the corner sites or the
sites at body center in a bcc lattice can be used to represent the overall concentration field. Transferring
the concentration field into Grizzly by matching the corner sites to the nodes of a cubic Grizzly mesh will
automatically satisfy mass conservation. The currently LKMC model has been parameterized for bcc Fe with
vacancy, Cu, Ni, Mn and Si. For all these elements, a concentration field can be calculated in SPPARKS and
transferred into Grizzly. The same capability can be used for any new elements to be included in the future.

To demonstrate the coupling, a simulation using a Fe-Vacancy20% model system is performed at a tem-
perature of 873 K. The 3D simulation domain is 80 by 80 by 4 bcc lattice constant units with 51200 atoms
(vacancies). Initially, the vacancies are randomly distributed in the matrix. As shown in Figure 7, at a time
of 0.01, the nucleation stage has finished with many nano-sized voids formed. The same configuration is
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Figure 7: (From left to right) Simulation cells showing the concentration field in LKMC at t=0.0 and t=0.01,
and that in Grizzly phase field at t=0.01. The coupling between SPPARKS and Grizzly is done at t=0.01 by
transferring the atomic concentration into the concentration field on a Grizzly mesh.

Figure 8: (a) Total mass in Grizzly phase field simulations as a function of that in LKMC simulations showing
the mass conservation during coupling.

then transferred into Grizzly for a phase field simulation. As can be seen from the figure, the concentration
fields in Grizzly and LKMC agree well with each other.

By defining the concentration using Eq. 14, theoretically mass should be conserved during transferring
the atomic concentration from a bcc lattice to a cubic mesh, of which the grid size equals to the lattice
constant of the bcc lattice. To further demonstrate this, a few simulations have been done, and the total
masses in Grizzly are plotted as functions of those in LKMC simulations. As shown in Figure 8, the masses
are accurately conserved during transfers.
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3.3 Summary
In summary, in FY15 the previously developed LKMC model has been coupled with Grizzly for phase
field simulations of precipitate coarsening. In the coupled framework, LKMC simulations will be used to
simulate the nucleation of precipitates, and PF simulations for the subsequent coarsening. The coupling
capability has been demonstrated using simulations using the Fe-Vacancy20% model system. Although in
the demonstration simulations only transfer from LKMC to Grizzly is shown, the transfer can be two way,
and on any properties defined on a bcc lattice. The coupling can be used in both 2D and 3D simulations.
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4 Rate theory modeling of radiation damage

In this chapter, we describe our initial efforts to develop the capability to use a rate theory approach to model
the radiation damage in RPV materials. In a reactor environment, radiation creates supersaturated point
defects such as vacancies and interstitials. These defects are highly diffusive at the reactor operation temper-
ature. If defects diffuse to dislocations, they are annihilated. If they meet defects or clusters of an opposite
type (e.g., interstitials meet voids), they recombine with the opposite-type defects. If they meet defects or
clusters of same type (e.g., vacancies meet voids), clusters grow. As a result, interstitial loops and voids form
during the microstructural evolution under irradiation. The microstructural evolution of radiation damage is
a multiscale process, from picoseconds to years. It has been shown that the mean-field rate theory approach
is successful for modeling this multiscale process. This method can use the same irradiation conditions as in
experiments (e.g., irradiation dose rate, dose, temperature, line dislocation densities in materials) and defect
diffusivities from atomistic calculations to predict defect evolution at realistic time scales. The simulation
outputs include void and dislocation loop sizes and their size distribution, void swelling, etc., which can be
directly compared with experiments. Currently we have implemented two types of rate theory models for
modeling radiation damage evolution: a basic Frenkel pair three-dimensional diffusion model (FP3DM) and
a more complex cluster dynamics (CD) model.

4.1 FP3DM rate theory modeling
In the FP3DM rate theory model, only isolated Frenkel pairs (mono interstitials and vacancies) are produced
and they migrate in a three-dimensional space. Dislocations have bias absorption of interstitials over va-
cancies. Both voids and interstitial loops are assumed to have fixed densities and their size distribution is
uniform. Although this is a basic rate theory model, implementing this FP3DM model is a starting point for
developing rate-theory modeling capability in Grizzly. It is also used as a benchmark problem for imple-
menting ordinary differential equation (ODE) based models into partial differential equation (PDE) based
MOOSE framework. The full details of the FP3DM model are described in the review paper by Golubov et
al. [24]. Here only some key equations are provided to explain our implementation procedure.

In FP3DM, the time evolution of point defect concentration for vacancies (𝐶𝑣) and interstitials (𝐶𝑖) can
be described by the following rate equations:

d𝐶𝑣

d𝑡
= 𝐾0 + 𝐺𝑡ℎ

𝑣 − 𝑘2𝑣𝐷𝑣𝐶𝑣 − 𝜇𝑅𝐷𝑖𝐶𝑖𝐶𝑣, (15)

d𝐶𝑖

d𝑡
= 𝐾0 − 𝑘2𝑖 𝐷𝑖𝐶𝑖 − 𝜇𝑅𝐷𝑖𝐶𝑖𝐶𝑣, (16)

where 𝐾0 represents defect production term which is a product of the dose rate and the cascade efficiency.
In FP3DM, equal number of mono interstitials and mono vacancies are produced; 𝐺𝑡ℎ

𝑣 represents thermal
vacancy emission rate; 𝑘2𝑣 and 𝑘2

𝑖
represent total sink strength for vacancies and interstitials, respectively;

𝐷𝑣 and 𝐷𝑖 are temperature-dependent vacancy and interstitial diffusion coefficients, respectively; 𝜇𝑅 is
interstitial-vacancy recombination coefficient. The sink strength has different forms for different types of
extended defects. For voids, the sink strength is 𝑘2

𝑣𝑜𝑖𝑑
= 4𝜋𝑅𝑣𝑜𝑖𝑑𝜌𝑣𝑜𝑖𝑑 , where 𝑅𝑣𝑜𝑖𝑑 is void radius and 𝜌𝑣𝑜𝑖𝑑 is

void density. For line dislocations, 𝑘2
𝑑
= 𝑧𝑖,𝑣

𝑑
𝜌𝑑 , where 𝑧𝑖,𝑣

𝑑
is defect capture efficiency by dislocations. Typ-

ically it is larger for interstitials than for vacancies, which is called dislocation bias. For dislocation loops,
𝑘2
𝐿
= 𝑧𝑖,𝑣

𝐿
2𝜋𝑅𝐿𝜌𝐿, where 𝑅𝐿 is loop radius and 𝑧𝑖,𝑣

𝐿
is defect capture efficiency by dislocation loops. Usually

𝑧𝑖,𝑣
𝐿

are set to the same values as 𝑧𝑖,𝑣
𝑑

for interstitials and vacancies, respectively. In this work, all these defect

sinks are considered. For recombination coefficient, 𝜇𝑅 = 4𝜋𝑟𝑒𝑓𝑓
Ω , where 𝑟𝑒𝑓𝑓 is the effective capture radius

of a vacancy by an interstitial (i.e., interstitial-vacancy recombination radius) which is about twice of the
lattice parameters, Ω is the atomic volume.
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By solving the Eqs. (15) and (16), the concentration of interstitials and vacancies as a function of time
can be obtained. The void and dislocation loop growth rates can be calculated from the evolution of point
defect concentration. For void growth, the rate is

d𝑅𝑣𝑜𝑖𝑑

d𝑡
= 1

𝑅𝑣𝑜𝑖𝑑

[
𝐷𝑣𝐶𝑣 −𝐷𝑖𝐶𝑖 −𝐷𝑣𝐶

𝑡ℎ
𝑣 exp

( 2Ω𝛾𝑠𝑢𝑟𝑓

𝑅𝑣𝑜𝑖𝑑𝑘𝐵𝑇

)]
, (17)

where 𝐶𝑡ℎ
𝑣 = exp

(−𝐸𝑣
𝑓

𝑘𝐵𝑇

)
is thermal vacancy concentration based on vacancy formation energy 𝐸𝑣

𝑓
, 𝛾𝑠𝑢𝑟𝑓 is

the surface energy, 𝑘𝐵 is Boltzmann constant, and 𝑇 is temperature. For dislocation loops, both interstitial
and vacancy loops can be modeled. However, in this work the vacancy loops are not modeled because it is not
clear whether vacancy loops in bcc iron play an important role during irradiation. For interstitial dislocation
loop growth, the rate is

d𝑅𝑖𝐿

d𝑡
= 1

𝑏

[
𝑧𝑖
𝐿
𝐷𝑖𝐶𝑖 − 𝑧𝑣

𝐿
𝐷𝑣𝐶𝑣 + 𝑧𝑣

𝐿
𝐷𝑣𝐶

𝑡ℎ
𝑣 exp

(
−
(𝛾𝑠𝑓 + 𝐸𝑒𝑙)𝑏2

𝑘𝐵𝑇

)]
, (18)

where 𝛾𝑠𝑓 is stacking fault energy, 𝑏 is Burgers vector, and 𝐸𝑒𝑙 is elastic interaction energy between a point
defect and a dislocation loop. 𝐸𝑒𝑙 is related to shear modulus, Poisson’s ratio, Burgers vector, and loop radius.
The expression of the defect-dislocation interaction energy can be find in Ref. [24]. Since the sink strength
of voids and dislocation loops is a function of void and loop size, respectively, the growth of voids and loops
(Eqs. (17) and (18)) will affect the sink strength dynamically. Therefore, Eqs. (17) and (18) should be fully
coupled to Eqs. (15) and (16).

The FP3DM rate theory model has been implemented in Grizzly, using ODE solving capabilities pro-
vided by MOOSE. A few new classes are created for implementing this model. Since in FP3DM the equa-
tions are ODEs, all the classes for rate theory models are inherited from the ODEKernel class. The base
class for FP3DM is called RateTheoryBase which contains some commonly used subroutines such as cal-
culating defect diffusion coefficients at different temperatures, sink strength, thermal vacancy concentration,
elastic interaction energy between point defects and dislocation loops, etc. A few child classes derived from
the base class are created to calculate the vacancy and interstitial concentration, void and loop sizes (Eqs.
(15) - (18)): CvRateTheory, CiRateTheory, VoidGrowthRateTheory, SIALoopGrowthRateTheory. These
classes are used as kernels in the input file. Although these kernels are designed to be fully coupled with
each other, the coupling can be conveniently turned on or off in the input file. In MOOSE, most differential
equations are solved by implicit methods. Therefore Newton method is used to solve the FP3DM equations
in Grizzly. Since Eqs. (15) - (18) are fully coupled, both diagonal and off-diagonal elements in the Jacobian
matrix are implemented in each kernel. Although the Jacobian matrix is very complex, this implementation
helps improve the convergence and accuracy of the solution. A test input file was also created in the Grizzly
repository so that users can use the test file as a template to modify the simulation conditions very easily.

To verify the implementation of the FP3DM model in Grizzly, an independent standalone code was also
developed to solve the same set of FP3DM equations, but using the explicit 6-order Runge-Kutta integration
method. Through the comparison between the explicit-based standalone code and implicit-based Grizzly, we
make sure that the FP3DM rate theory model is correctly implemented in Grizzly. In the following we show
a few examples of the comparison between Grizzly and standalone code. In these examples, the temperature
is 500 K; the dose rate is 1 × 10−5 displacements per atom per second (dpa/s) and the cascade efficiency is
0.366; The dislocation density is 1×1013 𝑚−2; The void density and interstitial loop density are both 1×1021
𝑚−3 and their initial radii are both 1 𝑛𝑚; the defect capture efficiency by dislocations and dislocation loops
is 1.04 for interstitials and 1.0 for vacancies.

Figure 9 shows the evolution of the interstitial and vacancy concentration as a function of irradiation dose
calculated by Grizzly and standalone code. In this example the growth of voids is turned off but voids still
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Figure 9: Comparison of the evolution of interstitial and vacancy concentration between Grizzly and stan-
dalone code. The rate theory model is based on the FP3DM model.

contribute to the sink strength. Loops are not included in the model. Clearly, Grizzly and the standalone code
give identical results despite the fact that they use different integration methods for solving the rate equations.
The defect concentration reaches steady state very quickly. The vacancy concentration is typically higher than
the interstitial concentration due to the defect bias by dislocations. The steady-state defect concentration is
useful for calculating other physical properties such as radiation-enhanced diffusion coefficients.

Figure 10: Comparison of the void growth result between Grizzly and standalone code. The rate theory
model is based on the FP3DM model.

Figure 10 shows the evolution of void radius as a function of irradiation dose predicted by Grizzly and
standalone code. In this example, the void growth is fully coupled with the point defect rate equations. Loops
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are not included in the model. Again, the two codes give identical results. The void radius increases almost
linearly with the logarithm of irradiation dose. In metals, the void growth contributes to the void swelling
directly. Thus from the void growth rate, the volumetric swelling due to void growth can be conveniently
calculated.

Figure 11: Comparison of the interstitial loop growth result between Grizzly and standalone code. The rate
theory model is based on the FP3DM model.

Figure 11 shows the evolution of interstitial loop radius as a function of irradiation dose predicted by
Grizzly and standalone code. In this example, both void growth and loop growth are fully coupled to the
point defect rate equations. The excellent agreement between Grizzly and standalone code demonstrates that
the FP3DM rate theory model implemented in Grizzly is fully verified. The interstitial loop radius increases
almost linearly with the irradiation dose within the dose range studied here.

In Grizzly, the input parameters are specified in the input file so that the irradiation conditions and
material-specific parameters can be conveniently modified without recompiling the code. Therefore, the
code can be conveniently used for studying defect evolution at different irradiation conditions. It also can be
extended for studying the radiation damage evolution in other materials if the material-specific parameters
are known.

4.2 Cluster dynamics modeling
The FP3DM rate theory model described in the previous section is a simple rate theory model. Although
this model has been successfully applied to study radiation damage evolution in many materials, it has many
inherent limitations. For example, only point defects (i.e., mono-interstitials and mono-vacancies) are pro-
duced in this model. Therefore, this model is suitable for modeling 1 MeV electron irradiation which only
produces isolated Frenkel pairs. However, it is well known that under neutron irradiation or heavy-ion irra-
diation, both point defects and defect clusters are produced in dense cascades. Therefore, it cannot model
cascade-induced defect clustering effects. In addition, in the FP3DM model, the void radius and disloca-
tion loop radius are averaged values so that the size distribution of these defect clusters cannot be modeled.
Moreover, the nucleation of defect clusters also cannot be modeled. As a result, the defect cluster densi-
ties are input parameters and an assumption of the defect cluster densities must be made. To remove these
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limitations, a more sophisticated method, cluster dynamics, has been developed. Cluster dynamics is also
based on mean-field rate theory, but it can model defect cluster nucleation and growth, defect cluster size
distribution, defect clustering from cascades, etc. Therefore, it is a more powerful model than the FP3DM.
The cluster dynamics model adopted in this work is based on the model described in Ref. [25]. Here a brief
description of this model is provided below.

Figure 12 shows the schematic of the cluster dynamics model for modeling radiation damage evolution.
Here cascade can produce both point defects and defect clusters. Mono point defects (interstitials and va-
cancies) are mobile and they diffuse three dimensionally. Defect clusters are assumed to be immobile for
simplicity although they can be mobile in cluster dynamics modeling. When point defects of opposite type
meet, recombination occurs. Line dislocations have dislocation bias, i.e., they preferentially absorb inter-
stitials over vacancies. When point defects meet a cluster of the same type, the cluster grows and its size
increases by 1. Similarly, when point defects meet a cluster of the opposite type, the cluster shrinks and the
cluster size decreases by 1. Vacancy clusters and interstitial clusters also have different thermal stability.
Vacancy clusters can thermally emit mono vacancies while interstitial clusters are assumed to be thermally
stable.

The cluster evolution can be described as

𝜕𝑓 (𝑥)
𝜕𝑡

= 𝐾(𝑥) + 𝐽 (𝑥 − 1) − 𝐽 (𝑥), 𝑥 ≥ 2, (19)

where 𝑓 (𝑥) is the density of defect cluster for size of 𝑥, which is also called the cluster size distribution
function (SDF); 𝐾(𝑥) is cluster production rate from cascades; 𝐽 (𝑥) is the cluster flux from size 𝑥 to 𝑥+1.
The cluster flux is related to the cluster SDF,

𝐽 (𝑥) = 𝑃 (𝑥)𝑓 (𝑥) −𝑄(𝑥 + 1)𝑓 (𝑥 + 1), (20)

where 𝑃 (𝑥) is cluster absorption rate for absorbing the same type of point defects; 𝑄(𝑥) is the cluster shrink-
age rate, either through absorbing defects of opposite type or through thermal emission of the same type of
defects. The standard expression of 𝑃 (𝑥) and 𝑄(𝑥) are provided in Ref. [25]. The equations for mobile point
defects are complex. Basically the equations consider defect production by cascades, point defect recombi-
nation, defect loss to line dislocations, thermal vacancy emission, defect absorption by all clusters of same
type, defect annihilation by all clusters of opposite type, and thermal emission of vacancies from vacancy
clusters. The formation and disassociation of dimmers also need special treatment. The full expressions of
these processes are described in Ref. [25].

The above cluster dynamics model for radiation damage evolution has been implemented in this work.
Similar to the implementation of FP3DM rate theory model, a standalone code has been developed in C/C++
first. In the future, the standalone code can be used as a reference code when the cluster dynamics equations
are implemented and solved in Grizzly. The input parameters are the same as those published in Ref. [25],
which is for pure iron. In addition, the vacancy formation energy is set to 1.7 eV, which was not provided in
Ref. [25]. The maximum cluster size is typically 10,000 (atoms) in our simulations so that there are 20,000
coupled differential equations. These cluster dynamics equations are solved by the SUNDIALS solver [26].
As follows, we present some simulation results from our cluster dynamics modeling.

First the cascade effects are investigated with cluster dynamics, as shown Figure 13. The irradiation
temperature is 573 K and the dose rate is 4 × 10−6 dpa/s. When there are no cascades, only Frenkel pairs
(mono-interstitials and mono-vacancies) are produced and the cascade efficiency is 1.0 (Note that the to-
tal defect production rate is the product of dose rate and cascade efficiency). This situation corresponds to
electron irradiation. When there are cascades, the cascade efficiency is 0.4. In addition to the production
of Frenkel pairs, defect clusters are also produced by cascades. This scenario represents the radiation dam-
age under neutron irradiation or heavy ion irradiation. Here we use the same assumption as in Ref. [25]:
30% of the total produced defects are in the form of interstitial clusters and vacancy clusters. For interstitial
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Figure 12: Schematic of the cluster dynamics model for interstitial cluster (loop) and vacancy cluster (void)
growth under irradiation.

Cascade 

No Cascade 

Figure 13: Cascade effects on evolution of radiation damage at 573 K under the dose rate of 4 × 10−6 dpa/s.
(a) Evolution of mono-interstitials for two scenarios. (b) Evolution of interstitial clusters. (c) Interstitial
cluster size distribution at 0.01 dpa.

clusters, the cluster fractions for 2-interstitial, 3-interstitial, 4-interstitial clusters are 14%, 12%, and 4%, re-
spectively. For vacancy clusters, all the cascade-produced clusters are 6-vacancy clusters. The evolution of
mono-interstitials is shown in Figure 13(a) for the two scenarios. When there are no cascades, the concen-
tration of mono-interstitials reaches steady state very quickly. When there are cascades, the concentration
of point defects is lower and also decreases with the increasing irradiation dose. However, for the evolution
of interstitial clusters (Figure 13(b)), the trend is reversed. The interstitial cluster density is about 3 orders
of magnitude higher if cascade effects are included, indicating that the heterogeneous nucleation of defect
clusters from cascades facilitates the cluster growth. The cluster size distribution at 0.01 dpa is shown in
Figure 13(c) for the two scenarios. If there are no cascades, the interstitial clusters almost have no cluster
growth. In contrast, the clusters have a broader size distribution if cascade effects are considered. Therefore,
cascades can facilitate cluster growth, which is consistent with our intuitive picture.

The temperature effects on the radiation damage evolution also can be conveniently studied with cluster
dynamics. Here three temperatures are investigated: 373 K, 473 K, and 573 K. In all simulations, the dose
rate is 4× 10−6 dpa/s and cascade-induced clustering effects are considered. The density of mono-vacancies
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Figure 14: Temperature effects on defect and defect cluster evolution under cascade conditions with the dose
rate of 4 × 10−6 dpa/s. (a) Evolution of the density of mono-vacancies at three temperatures. (b) Evolution
of the density of vacancy clusters at three temperatures.

as a function of irradiation dose is shown in Figure 14(a) and the evolution of the density of vacancy clusters is
shown in Figure 14(b). As temperature increases, the densities of both mono-vacancies and vacancy clusters
decrease because the defect recombination and vacancy cluster disassociation also increase. Therefore, the
growth of vacancy clusters is suppressed as temperature increases for the present parameter set.

Figure 15: Effects of dose rate on defect and cluster densities under cascade conditions at 373 K. (a) The
densities of mono-vacancies as a function of dose at three dose rates. (b) The evolution of the densities of
total vacancy clusters at three dose rates.

The effects of dose rate on the damage evolution are also studied with cluster dynamics. Here three dose
rates are studied: 4×10−8, 4×10−7, and 4×10−6 dpa/s. In all simulations, the temperature is 373 K and the
cascade effects are considered. The densities of mono-vacancies as a function of dose at different dose rates
are shown in Figure 15(a) and the densities of vacancy clusters as a function of dose are shown in Figure 15(b).
As the dose rate increases, the concentration of mono-vacancies also increases. Interestingly, the total density
of vacancy clusters is insensitive to the dose rate. Note that this insensitivity may be specific to the present
parameter set. In future we will investigate whether this trend changes if different input parameters are used.

One advantage of cluster dynamics over FP3DM rate theory model is that cluster dynamics can model the
nucleation of defect clusters. Under cascade conditions, both homogeneous nucleation and heterogeneous in-
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Figure 16: The nucleation rate of total vacancy clusters as a function of dose rate at 373 K under cascade
conditions. Both homogeneous and heterogeneous nucleation rates are included in the calculation. At each
dose rate, the nucleation rates at four different times are calculated. Note that this is a log-log plot.

cascade nucleation can occur. Cluster dynamics can calculate either the total nucleation rate or the separate
nucleation rates. To demonstrate this capability, the total vacancy cluster nucleation rates at four dose rates
are calculated under cascade conditions at 373 K, as shown in Figure 16. Here all the clusters with sizes of
two or larger are included in the calculation. At each dose rate, the nucleation rates at four different times
are calculated. In the log-log plot, the vacancy cluster nucleation rate increases almost linearly with the dose
rate. The nucleation rates at different times for a given dose rate are also close to each other, indicating the
nucleation reaches nearly a steady state. The nucleation rate calculated from cluster dynamics may be used
as input for other methods such as phase field because phase field has difficulties to model the nucleation
process when defect concentration is very low (e.g., 1 × 10−8), which is usually the case for the nucleation
of interstitial and vacancy clusters under irradiation.

When vacancies form clusters, they can cause void-induced volumetric swelling. Similar to the FP3DM
rate theory model, the void swelling also can be calculated from cluster dynamics. Here we assume that all
vacancies in clusters contribute to volumetric swelling. As an example, Figure 17 shows the void swelling
as a function of irradiation dose at 473 K under cascade conditions with a dose rate of 4 × 10−6 dpa/s. The
swelling increases continuously with dose.

In the standard cluster dynamics modeling, at each cluster size there is one differential equation for each
vacancy cluster (same for interstitial clusters). When the maximum cluster size considered in the modeling
is large, the computational cost is also high. This will prevent us from studying large clusters or performing
simulations for long irradiation times. To overcome these limitations, researchers have developed a grouping
method to improve the efficiency of cluster dynamics [27]. In this work, we have implemented this grouping
method. Figure 18(a) illustrates the main feature of this grouping method. In this method, the standard
discrete method is still used for the cluster size smaller than a threshold size, i.e., one equation for each
cluster size. Here the threshold size is set to 100. Beyond this threshold size, several neighboring clusters
are grouped into one group. In each group, only the cluster at the upper group boundary has two differential
equations. The densities of clusters within each group are linearly extrapolated from the number density
of the boundary cluster in that group. To further improve the code efficiency, we also use variable group
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Figure 17: Void swelling as a function of irradiation dose at 473 K under cascade conditions with a dose rate
of 4 × 10−6 dpa/s.

Figure 18: Grouping method for improving the efficiency of solving cluster dynamics equations. (a)
Schematic of the grouping method. (b) The group size distributions in two examples.

sizes, i.e., group size increases with group number. In this work, two grouping size distributions are used, as
shown in figure 18(b). The grouping method can reduce the number of differential equations to be solved and
increase the code efficiency significantly. For example, for the maximum group size of 10,000, the number of
differential equations for vacancy clusters is 10,000 in the fully discrete method (same for interstitial clusters).
However, for the smaller group size in the grouping method, only 592 differential equations are solved for
vacancy clusters. For the larger group size, only 344 differential equations are solved for vacancy clusters.

To demonstrate that the grouping method can reproduce the results from the fully discrete (no grouping)
method, we compare the vacancy concentration as a function of dose at three scenarios: no grouping, smaller
grouping size, and larger grouping size, as shown in Figure 19(a). Clearly the results are nearly identical in
the three scenarios, indicating that the grouping method can reach very good accuracy if the group sizes are
chosen appropriately. In addition, the computational times in the two grouping method based simulations
are much smaller than the fully discrete method, as shown in Figure 19(b). In particular, the simulation using
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Figure 19: Performance of the grouping method. (a) Comparison of vacancy concentration evolution for
three approaches. (b) The computational times for the three approaches. Note that the time is in log scale.

the larger group size is about 800 times faster than the no-grouping method. These results demonstrate that
we have successfully implemented the grouping method for improving the efficiency of cluster dynamics
modeling.
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5 Summary

In FY15, significant progress has been made on model development for microstructure evolution, including
rate theory and cluster dynamics for lattice features and coupling lattice kinetic Monte Carlo and phase field
for solute precipitation. For lattice features, a rate theory FP3DM model has been developed and integrated
into Grizzly for the evolution of the mean size of radiation-induced defects such as interstitial loops and
voids. A stand-alone cluster dynamics model has also been developed at INL to obtain the size distribution
of lattice features. This model will be merged into the Grizzly package in the future so that engineering scale
models can use this information to predict radiation induced hardening and embrittlement. For solute pre-
cipitation, a multi-phase, multi-component phase field model has been developed in Grizzly for FeCuMnNi
alloys, which are similar to realistic RPV steels. To make up for the deficiency of the phase field method
in modeling precipitate nucleation, the previously-developed lattice kinetic Monte Carlo model has been
coupled with a Grizzly phase field model to cover both the nucleation and the coarsening stages of precipita-
tion. The coupling has been demonstrated using a Fe-Vacancy20% model system. These developments have
substantially advanced the modeling capabilities of Grizzly for RPV microstructure evolution.

In FY16, new efforts on modeling microstructure evolution will focus on: 1) merging the cluster dynam-
ics model into Grizzly; 2) coupling lattice kinetic Monte Carlo and phase field for realistic RPV compositions
and operating conditions; 3) investigating radiation enhanced diffusion in RPV steels; 4) coupling phase field
and dislocation dynamics for stress-strain behavior in RPV steels; 5) passing information on microstructure
evolution to crystal plasticity models for hardening.
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